18 research outputs found

    Uncovering the spatial pattern of invasion of the honeybee pest small hive beetle, Aethina tumida, in Italy

    Get PDF
    The fast tracking of invasion spatial patterns of alien species is crucial for the implementation of preventive and management strategies of those species. Recently, a honeybee pest, the small hive beetle Aethina tumida (hereafter SHB), has been reported in Italy, where it colonized more than 50 apiaries in an area of about 300 km2. SHB is a nest parasite and scavenger of honeybee colonies native of Sub-Saharian Africa. Likely being helped by the globalization of apiculture, SHB underwent several invasions in the last twenty years, causing locally relevant economic impact. While many features of its biology have been addressed, an important knowledge gap concerns the spatial invasion dynamics in invaded areas. In this paper we coupled two spatial analysis techniques (geographic profiling and a density-based spatial clustering algorithm) to uncover the possible invasion pattern of SHB in Italy. We identified the port town of Gioia Tauro as the most likely point from which SHB may have spread and suggested the possible successive axes of diffusion. These putative diffusion paths suggest that the SHB spread in south Italy might have been due to a mix of natural dispersal between close apiaries and longer distance movement through faster, likely human-mediated, communication routes

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Abuso di eterodirezione e poteri del curatore

    No full text
    Il saggio muove dal dato sistematico, che emerge dal nuovo Codice della Crisi di Impresa e dell'Insolvenza, dell'ampliamento delle funzioni (e correlativi poteri) del curatore fallimentare (nel nuovo Codice: della liquidazione giudiziale), anche come interprete delle istanze privatistiche legate alla crisi di impresa; ciò in armonia con un principio generale di "buon andamento" delle procedure che, in materia di abuso di direzione e coordinamento, è funzionale ad ottimizzare l'esperimento dell'azione di responsabilità contro la capogruppo. In questo quadro l'A. ritiene che il Codice rechi una importante innovazione rappresentata dall'introduzione della facoltà di esperire non soltanto l'azione dei creditori sociali (art. 2497, ult. comma, c.c.) ma altresì l'azione spettante ai soci. In tale direzione, dopo una ricostruzione degli orientamenti dottrinali e giurisprudenziali in materia, l'A. adduce vari argomenti, che postulano una revisione del concetto di azione di massa: come mezzo di tutela non esclusivamente a favore del ceto creditorio concorsuale, diventano "collettive o di classe" in quanto finalizzate alla ricostruzione del patrimonio in senso lato del debitore, incluse le prospettive di reddit

    A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells

    No full text
    Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ–producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)–inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct–cSAP targeted immunogenic uterine CD11b[superscript +]CD103[superscript –] dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b[superscript –]CD103[superscript +] DCs. Regardless of vaccination route, UV-Ct–cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T[subscript RM] cells). Optimal Ct clearance required both T[subscript RM] seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct–cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties.National Institutes of Health (U.S.) (Grant U54-CA119349)National Institutes of Health (U.S.) (Grant U54-CA151884)National Institutes of Health (U.S.) (Grant R37-EB000244)Prostate Cancer FoundationMIT-Portugal ProgramNational Science Foundation (U.S.). Graduate Research Fellowshi
    corecore